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The Ivanov-Anderson model �and an earlier treatment by Kubo� envisages a decay of the orientational
correlation by random but large amplitude molecular jumps, as opposed to infinitesimal small jumps assumed
in Brownian diffusion. Recent computer simulation studies on water and viscous liquids have shown that large
amplitude motions may indeed be more of a rule than exception. Existing theoretical studies on jump diffusion
mostly assume an exponential �Poissonian� waiting time distribution for jumps, thereby again leading to an
exponential decay. Here we extend the existing formalism of Ivanov and Anderson to include an algebraic
waiting time distribution between two jumps. As a result, the first ��=1� and second ��=2� rank orientational
time correlation functions show the same long time power law, but their short time decay behavior is quite
different. The predicted Cole-Cole plot of dielectric relaxation reproduces various features of non-Debye
behavior observed experimentally. We also developed a theory where both unrestricted small jumps and large
angular jumps coexist simultaneously. The small jumps are shown to have a large effect on the long time decay,
particularly in mitigating the effects of algebraic waiting time distribution, and in giving rise to an exponential-
like decay, with a time constant, surprisingly, less than the time constant that arises from small amplitude decay
alone.

DOI: 10.1103/PhysRevE.77.031505 PACS number�s�: 64.70.P�, 05.40.Jc, 66.20.�d, 66.10.�x

I. INTRODUCTION

Because orientational relaxation of molecules is relatively
easily accessed by a variety of experimental techniques
�NMR, IR, fluorescence depolarization, optical Kerr effect,
to name a few� �1–6�, many theoretical models and micro-
scopic studies have addressed various aspects of molecular
rotation in dense liquids and glasses �6–11�. The most cel-
ebrated of these studies is the one carried out by Debye many
years ago, in terms of a simple rotational diffusion equation
�3,4�. The theory assumes that rotational correlation in liq-
uids decay by small amplitude rotational Brownian motion,
with a rotational diffusion coefficient, DR. The theory makes
the simple prediction that the decay of the correlation func-
tions of all ranks of Legendre function is exponential and is
given by

C��t� � �P��cos ��t��� = exp�− � �� + 1�DRt� , �1�

where ��t� is the azimuthal angle at time t. The Debye model
of rotational diffusion has played a pivotal role in most of the
discussions on rotational diffusion in the condensed phases.
Many theoretical studies have attempted to improve upon the
Debye model, using for example, a generalized Langevin
equation approach which ultimately leads to a time or fre-
quency dependent diffusion coefficient. But all these ap-
proaches use the general assumption of infinitesimal rotation
of Brownian motion.

Recent experimental and theoretical studies on viscous
liquids and surprisingly, liquid water, have shown a marked
departure from the classical Debye behavior �11–17�. In
these cases, rotational diffusion is found to occur by large
amplitude jumps. In liquid water, the nonexponentiality, at

room temperature, is weak but relaxation becomes progres-
sively nonexponential at low temperatures �17�. The rota-
tional relaxation �and also translational diffusion� seems to
occur primarily through rare but large amplitude jumps. A
quantitative understanding of the origin of such jumps has
remained a subject of great interest, though largely unsolved.

A model of rotational jump diffusion was actually pro-
posed in the past, most notably by Kubo �18,19� and Ivanov
�7�. In Kubo’s model of jump diffusion, the rotator was re-
stricted to jump in a circle, that is restricted to two dimen-
sion. �See Fig. 1�a�.� Ivanov’s model was more general
where jumps were isotropically distributed in three dimen-
sion. �See Fig. 1�b�.� Ivanov’s model has found increasing
use in describing experimental results. In this model, the
waiting time between jumps obey an exponential distribution
and as a result, the decay is single exponential, with the first
and second rank correlation functions which are given by

C1�t� = exp�− �1 − cos��t/�� , �2�

C2�t� = exp�−
3

2
�1 − cos2 ��t/�	 , �3�

where � is the constant amplitude of jump and � is the av-
erage time interval between any two jumps. The probability
that there are n jumps in a time interval t is assumed to be
given by Poisson distribution

P�n,t� =
�t/��n

n!
exp�− t/�� . �4�

For small jumps, Eqs. �2� and �3� go over to the Debye
behavior, with �1 /�2=3, where �1 and �2 are the decay time
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constants of C1�t� and C2�t�, respectively. However, the re-
laxation pattern is different for long jumps. The difference is
most acute when the jump angle � is close to �. A jump by
�
� relaxes C1�t� but not C2�t�. Therefore, �1 /�2 becomes
much smaller than three and approaches zero. Interestingly,
for intermediate values of jump length parameter ���� /2�,
the ratio of the two time constants approach unity. In the
original models, reorientations were assumed to be isotropic.
Recently, they have been extended to include anisotropic
molecular reorientations �20,21�. In a notable development,
recently Déjardin and Jadzyn have extended the Debye rota-
tional diffusion model to a fractional rotational diffusion case
to treat events that are nonlocal in time due to the existence
of extensive memory effect �22�. Under fractional rotational
Brownian motion, the decay of the relevant orientationalcor-
relation functions is no longer exponential �or, sum of a few
exponential terms�. It was shown that the decay can be de-
scribed as a combination of Mittag-Leffler temporal pattern,
behaving like a stretched exponential at short times and an
inverse power law in the long time limit. Fractional equa-
tions provide an anomalously slow decay at long times, often
referred to as subdiffusive regime. As pointed out by many,
the fractional Fokker-Planck or Smoluchowski equation is a
natural generalization of normal diffusion to disordered sys-
tems with scale free memory effects �23–26�. Déjardin and
Jadzyn obtained analytic expressions of the frequency ���
dependent electric birefringence spectrum, ����. They plot-
ted the Cole-Cole diagram for various cases to demonstrate

the effects of fractional diffusion. Fractional diffusion gives
rise to markedly non-Debye Cole-Cole plot which now var-
ies from Cole-Davidson skewed arc behavior to Cole-Cole
depressed circle. The treatment of Déjardin and Jadzyn is
still based on rotational diffusion equation, and does not con-
tain the effects of finite jumps. However, as already dis-
cussed, in many complex systems, rotational relaxation oc-
curs by large amplitude jumps. For example, in liquid water,
it has recently been discussed how much of the relaxation of
orientational correlation occurs by jumps which are of the
order of 60° �17�. Such motions cannot be treated as a
Brownian diffusion. In addition, in many complex systems,
the waiting time distribution between jumps may not be ap-
proximated by Poissonian distribution �23–28�. In the
present work we have extended the theory of Kubo, Ivanov,
and Anderson to treat jump diffusion with an algebraic wait-
ing time distribution. Since the treatments of Kubo are dif-
ferent from that of Ivanov and Anderson, separate solutions
have been obtained. As is usually the case for relaxation with
fractional diffusion, an analytical solution of the orientational
time correlation function has been obtained only in the fre-
quency domain. However, we have been able to obtain
asymptotic solution in all the cases. The decay of the corre-
lation of the first and the second rank harmonic follow power
law. This signifies a breakdown of Debye behavior in disper-
sive medium. We have also developed a theory where the
large amplitude jumps simultaneously coexist with small am-
plitude jumps. Interestingly, the exponential kinetics is re-
covered even under the small fraction of small amplitude
jumps but the decay is accelerated by large amplitude jumps.

II. GENERALIZATION OF JUMP MODEL

A. Kubo model

We consider a two-dimensional rotator which makes the
series of jumps. The model was originally proposed by Kubo
for rotational relaxation of spin under the presence of pulsed
magnetic fields �18,19�. The angle changes by the jump with
the amount �n at time tn. According to Kubo, we define

f ����t� =�

n=0

�

exp�i � 

m=0

n

�m�P�n,t�� , �5�

where P�n , t� represents the probability of having n jumps up
to time t and �¯� denotes the ensemble average of scattering
angles. The correlation functions are obtained by

C��t� = Re�f ����t�� , �6�

where �=1, 2. It should be noticed here that the �th rank
correlation function is defined in terms of cos ���t� for the
two-dimensional rotator. Even when the second rank corre-
lation function is defined in terms of the Legendre function
of the three-dimensional isotropic rotator, the right-hand side
of Eq. �6� is equal to �C��t�−C����� / �C��0�−C�����, which
still expresses the decay of correlation function. We calculate
Re�f ���� and represents it by C��t� of the two-dimensional
rotator for the Kubo model. The waiting time distribution of
each time interval �n= tn− tn−1, is assumed to be statistically
independent and it is represented by 	�t�. We also introduce

a)

b)

FIG. 1. �a� Schematic illustration of the Kubo model. Jumps are
restricted on a circle. �b� Schematic illustration of the Ivanov-
Anderson model. Jumps are isotropically distributed on a sphere.
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�t�=�t
�dt1	�t1� as a probability that a molecular rotor will

not make a jump for the time interval between 0 and t. The
probability of having n jumps up to time t is given after the

Laplace transformation, P̂�n ,s�=�0
�exp�−st�P�n , t�, as �29�

P̂�n,s� = 
̂�s�	̂n�s� , �7�

where 
̂�s�= �1− 	̂�s�� /s. The amount of each jump is also
assumed to be statistically independent,

�exp�i

n

�n�� = exp�in�� . �8�

Then, we have

C��t� = Re�

n=0

�

exp�i � n��P�n,t�	 . �9�

By substituting Eq. �7� into Eq. �9�, the Laplace transform of
it becomes

Ĉ��s� =
1 − 	̂�s�

s
Re� 1

1 − exp�i � ��	̂�s�
	 . �10�

The above equation holds for an arbitrary waiting time dis-
tribution function and an arbitrary jump amplitude. When the
waiting time distribution decays exponentially with the char-
acteristic time of the jump interval, �, the well-known result
for the Poisson noise is recovered, i.e.,

C��t� = exp�− �t/���1 − cos������cos��t/��sin�����

= exp�− t�2/��sin2���/2��cos��t/��sin����� . �11�

Equation �10� is the generalization of the Kubo model to the
case of an arbitrary waiting time distribution. Equation �11�
was given by Kubo for the Poissonian waiting time distribu-
tion for �=1 �18,19�. In two-dimensional rotational diffu-
sion, Eq. �1� is replaced by exp�−�2DRt� �30� since the cor-
relation function is defined by �cos����t���. Equation �11�
gives �1 /�2=4 in the limit of a small amplitude jump, which
is consistent with the result of a conventional two-
dimensional rotator. Rotational motion of liquid crystal mol-
ecules about their long axis is often analyzed by a rotational
jump diffusion model similar to the Kubo model, where a
circular random walk is performed among N sites equally
spaced on the periphery of a circle �31�. The relaxation rates
are obtained as �2 /��sin2��� /2�, which corresponds to those
of Eq. �11� with �=2� /N.

B. Ivanov-Anderson model

For dielectric relaxation, however, the Ivanov-Anderson
model is more popular to describe the random scattering of
angle �7,8�. The Ivanov-Anderson model is, however, similar
in spirit to the Kubo model. The Ivanov-Anderson model
assumes for simplicity an isotropic reorientation by random
angular jumps. If we denote the angular change by nth jump
by �n and assume that it is statistically independent as in the
Kubo model, we have

L1 = cos� = �cos�n� , �12�

L2 = �3 cos2� − 1�/2 = ���3 cos2�n − 1��/2� . �13�

It is known that the correlation function is expressed in the
form similar to Eq. �9� as

C��t� = 

n=0

�

L�
nP�n,t� . �14�

By substituting the Laplace transform of Eq. �7�, the Laplace
transform of the correlation function, Eq. �14�, becomes

Ĉ��s� =
1 − 	̂�s�

s

1

1 − L�	̂�s�
. �15�

Equation �15� is valid for an arbitrary waiting time distribu-
tion. When the waiting time distribution between jumps de-
cays exponentially with the characteristic time �, Eq. �15�
recovers the well known results of Eqs. �2� and �3�. Here, the
Ivanov-Anderson model is generalized to the case of an ar-
bitrary waiting time distribution.

III. ALGEBRAIC WAITING TIME DISTRIBUTION
OF JUMP

Now, we study the influence of the power law waiting
time distribution 	�t�
1 / t�+1 on the correlation functions. A
well-known and popular waiting time distribution function
which is normalizable is given by

	�t� =
���� + 1,�rt�

�r
�t�+1 , �16�

where ��z , p���0
pe−ttz−1dt for �Rez
0� is the incomplete

Gamma function �32�. Equation �16� can be derived from a
model in which the hopping rate depends on a parameter
exponentially �for example activation energy� and the value
of this parameter has an exponential distribution �33�. �r is a
parameter characterizing the hopping frequency. The waiting
time distribution of Eq. �16� can be written approximately in
a more transparent form,

	�t� �
���� + 1�

�r
�t�+1 , �17�

where ��z� is the Gamma function �32�. The Laplace trans-
form of the waiting time distribution is obtained as

	̂�s� = 1 − 2F1�1,�,� + 1,− �r/s� . �18�

Equation �18� is useful because the following property of the
hypergeometric function is known �32�,

2F1�1,�,� + 1,− �r/s� �
��

sin ��
� s

�r
�� s

�r
� 1. �19�

By substituting Eq. �18� into Eq. �10�, the extended Kubo
model leads to,

Ĉ��s� � 2F1�1,�,� + 1,− �r/s�
s

Re� 1

1 − exp�i � ���
�20�
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�
��

sin ��
� 1 − cos����

�1 − cos�����2 + sin2����	 1

s1−��r
� .

�21�

By performing the inverse Laplace transformation, we find
the asymptotic time dependence for the extended Kubo
model,

C��t� �
��

sin ��
� 1 − cos����

�1 − cos�����2 + sin2����	 1

��1 − ����rt�� .

�22�

We can obtain the solution of the extended Ivanov-
Anderson model in a similar fashion. By substituting Eq.
�19� into Eq. �18�, Eq. �15� becomes

Ĉ��s� =
1

L�

s�−1

s� +
1 − L�

L�

sin ��

��
�r

�

. �23�

In the long time limit,

��rt�� 

L�

1 − L�

��

sin����
, �24�

we find, in the small s limit, the following asymptotic result:

Ĉ��s� �
��

sin ��

1

s1−��r
�

1

1 − L�

. �25�

By performing the inverse Laplace transformation, we find
the asymptotic time dependence of the extended Ivanov-
Anderson model as

C��t� �
��

sin ��

1

�1 − L��
1

��1 − ����rt�� . �26�

Both Kubo and Ivanov-Anderson models predict exactly the
same time dependence of the correlation functions, which is
described by the algebraic time dependence with the expo-
nent �. As we can see from Eq. �24�, the above asymptotic
dependence is hardly attained when L��1. This case can be
examined more rigorously. By the inverse Laplace transfor-
mation of Eq. �23�, we find the correlation functions ex-
pressed in terms of Mittag-Leffler function,

C��t� = E��−
1 − L�

L�

sin ��

��
��rt��	 , �27�

where the Mittag-Leffler function is defined by, E��z�
=
0

�zk /���k+1� and L��1 is introduced. The Mittag-
Leffler function is approximated by the stretched exponential
function,

C��t� � exp�−
1 − L�

��1 + ��L�

sin����
��

��rt��	 , �28�

except the final component showing algebraic decay of Eq.
�26� which appears at very long times when L��1. L��1
occurs when ��0 for both �=1 and �=2. When ���,
L2�1 but L1�1. Therefore, when � is small, both C1�t� and
C2�t� mainly decay according to stretched exponential law.

As � is increased into the range, 0����, both C1�t� and
C2�t� exhibit algebraic decay of Eq. �26�. When � is closed
to �, C2�t� mainly decays by the stretched exponential law
and the final small components of both C1�t� and C2�t� are
described by algebraic decay.

By the known identity of the Mittag-Leffler function for
�=0.5, Eq. �27� can be expressed as

C��t� = exp��2�1 − L��
�L�

�2

�rt	erfc�2�1 − L��
�L�

��rt	 ,

�29�

for �=1 /2, where the complementary error function is de-
fined by erfc�z�= �2 /����z

� exp�−y2�dy �32�. We compare
these analytical results with the numerical Laplace inversion
of the exact results �Eqs. �10� and �15� with Eq. �18�� in Sec.
V.

IV. SIMULTANEOUS COEXISTENCE OF LARGE
AND SMALL AMPLITUDE JUMPS

In many situations, jumps with large amplitudes are rare
and they are superimposed on the small amplitude jumps
which occur frequently. We denote the waiting time distribu-
tion of large amplitude jump by, 	a�t� and that of small am-
plitude jump by 	b�t�. Theoretically, they are related with
each other. By denoting the waiting time distribution of large
amplitude jump in the absence of small amplitude jump by,
	a

�0��t�, and that of small amplitude jump in the absence of
large amplitude jump by, 	b

�0��t�, the waiting time distribution
under the presence of both types of jumps is expressed as
�34�

	a�t� = 	a
�0��t��1 − �

0

t

dt	b
�0��t�� , �30�

	b�t� = 	b
�0��t��1 − �

0

t

dt	a
�0��t�� , �31�

since the large amplitude jump occurs before the occurrence
of small amplitude jump and vice versa.

First we consider the case of the Kubo model. The
Laplace transform of the correlation function is generalized
from Eq. �10� as

Ĉ��s� =
1 − 	̂a�s� − 	̂b�s�

s
Re�


n=0

�

�exp�i � �a�	̂a�s�

+ exp�i � �b�	̂b�s��n	 �32�

=
1 − 	̂a�s� − 	̂b�s�

s

�Re� 1

1 − exp�i � �a�	̂a�s� − exp�i � �b�	̂b�s�
	 ,

�33�

where we assume that each jump belonging to either large or
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small amplitude is statistically independent and the average
is denoted by, exp�i�� j�, where j=a ,b.

For the Ivanov-Anderson model, the Laplace transform of
the correlation function is generalized from Eq. �15� as

Ĉ��s� =
1 − 	̂a�s� − 	̂b�s�

s �

n=0

�

�L�
�a�	̂a�s� + L�

�b�	̂b�s��n	
�34�

=
1 − 	̂a�s� − 	̂b�s�

s � 1

1 − L�
�a�	̂a�s� − L�

�b�	̂b�s�
	 ,

�35�

where we again assume that each jump belonging to either
large or small amplitude is statistically independent and the
average is denoted by

L1
�j� = cos � j , �36�

L2
�j� = �3 cos2� j − 1�/2, �37�

where j=a ,b.
When both amplitude jumps occur according to the expo-

nential waiting time distribution,

	a�t� =
1

�a
exp�− t/�a − t/�b� �38�

	b�t� =
1

�b
exp�− t/�a − t/�b� , �39�

Kubo’s result of Eq. �11� is generalized to

C��t� = exp�− 

j=a,b

�t/� j��1 − cos��� j��	
�cos� 


j=a,b
�t/� j�sin��� j�	 . �40�

While, Ivanov-Anderson’s results, Eqs. �2� and �3� are
generalized to

C1�t� = exp�− 

j=a,b

�1 − cos � j��t/� j�	 , �41�

C2�t� = exp�− 

j=a,b

3

2
�1 − cos2 � j��t/� j�	 , �42�

as expected from the Markovian kinetics.
When the large amplitude jump obeys the algebraic wait-

ing time distribution,

	a
�0��t� =

���� + 1,t/�a�
t�t/�a�� , �43�

and the small amplitude jump obeys the exponential kinetics,

	b
�0��t� =

1

�b
exp�− t/�b� , �44�

the waiting time distributions under the presence of both
types of jumps are given by

	a�t� = 	a
�0��t�exp�− t/�b� , �45�

	b�t� =
1

�b
exp�− t/�b��

t

�

dt1	a
�0��t1� . �46�

The Laplace transform is obtained as

	̂a�s� = 	̂a
�0��s + 1/�b� , �47�

	̂b�s� =
1/�b

s + 1/�b
�1 − 	̂a

�0��s + 1/�b�� , �48�

where 	̂a
�0��z� is expressed as

	̂a
�0��z� = 1 − 2F1�1,�,� + 1,− 1/��az�� . �49�

By substituting Eqs. �47� and �48� into Eqs. �33� and �35�,
the exact solutions are obtained in the Laplace domain. How-
ever, the inverse Laplace transform is too complicated for
analytical calculation and will be performed numerically.

Since we are interested in the case where the characteris-
tic time of small amplitude jump is much shorter than that of
large amplitude jump, the approximate solutions can be ob-
tained by taking the limit, 2F1�1,� ,�+1,−1 / ��a�s+1 /�b���
�2F1�1,� ,�+1,−�b /�a�, which leads to 	̂a

�0��s+1 /�b�
� 	̂a

�0��1 /�b�. In the approximation, the s dependence in the
Laplace transform of waiting time distribution is dropped
out. The s dependence can be ignored when we are interested
in the time scale larger than that of small amplitude jumps.
The quantity is just the time integration over waiting time
distribution of large amplitude jumps and represents the
probability of occurrence of large amplitude jumps, i.e., the
escape probability from small amplitude jumps by a large
amplitude jump. By introducing the approximation, we find
that the correlation functions decay exponentially,

C1�t� = exp�− �t/�b��1 −
cos��b�	̂b�0�

1 − cos��a�	̂a�0�
�	 , �50�

C2�t� = exp�− 3�t/�b�
1 − cos�2�a�	̂a�0� − cos�2�b�	̂b�0�

3 + 	̂b�0� − 3 cos�2�a�	̂a�0�
	 .

�51�

When �a is close to �b�0, we recover Eqs. �2� and �3� with

�=�b and �=�b by substituting 	̂b�0��1 and 	̂a�0��0 into
the above expressions. The exponential kinetics of Eqs. �50�
and �51� even under the algebraic waiting time distribution
of the rare but large amplitude jumps is the important result
of this article.

V. NUMERICAL RESULTS

Figure 2 shows the relaxation of correlations of Ivanov-
Anderson model for �=60°. For this value of �, C2�t� de-
cays faster than C1�t� for any values of �. Compared to the
decay by normal diffusion, decay of both C2�t� and C1�t� is
slowed down when the waiting time distribution has an al-
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gebraic time dependence. At long times, all decay curves are
well represented by the algebraic decay of Eq. �26� with the
exponent �. The long time tail in the decay of correlation
originates from the algebraic time dependence of the waiting
time distribution. The exponent is the same for both �=2 and
�=1 components.

When � is increased to �=170�, C2�t� decays slower than
C1�t� for any values of � as shown in Fig. 3. As � is de-
creased, the relaxation becomes slower. Long time
asymptotic decay is again represented by the algebraic decay
of Eq. �26�. C2�t� decays according to Mittag-Leffler func-
tion at intermediate times and the fitting becomes better as �
is lowered. Since the Mittag-Leffler function is approximated
by the stretched exponential decay of Eq. �28� in this time
range, C2�t� is well fitted by the stretched exponential func-
tion. The stretched exponential decay appears when � is
close to 180° for C2�t� and � is close to 0� for both C2�t� and
C1�t�. For other values of � the analytical form of the decay
is not obtained but as we can see from the inset of Fig. 2 the
decay curves are very different from the single exponential
decay when ��1. Only when �=1, the correlations decay
fast with exponential time dependence which is shown by the
straight line in the log-linear plot.

The results for different values of � with � kept constant
are summarized in Fig. 4. For any value of �, asymptotic
time dependence is described by the algebraic time depen-
dence with the exponent �. The relaxation of C1�t� slows
down monotonically as � is decreased. Since C2�t� is given
by the square of cos �, the decay is the same when � is
changed to �−�. As � is increased from 0°, the decay of
C2�t� becomes faster. The fastest decay is obtained for �
=90°. When � is further increased from �=90°, the decay is
slowed down.

In order to facilitate comparison with dielectric relaxation
experiments in dispersive medium, we investigated the be-
havior of the Cole-Cole diagram as a function of system
parameters �like jump angle and value of the power law ex-
ponent�. The Cole-Cole diagram is obtained from the com-
plex dielectric function, ����, which satisfies �19,35�
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FIG. 3. �Color online� Correlation functions of the Ivanov-
Anderson model with �=170° against dimensionless time, �rt. Red
lines represent C2�t� and black lines represent C1�t�. �=0.5 and 0.8
from top to bottom. Thin lines indicate the results of the normal
diffusion. Dashed lines represent asymptotic algebraic time depen-
dence of Eq. �26�. Dots represent the results of Mittag-Leffler func-
tion of Eq. �27�.
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FIG. 4. �Color online� Correlation functions of the Ivanov-
Anderson model for �=0.8 with various values of jump amplitude
against dimensionless time, �rt. Red lines represent C2�t� and black
lines and symbols represent C1�t�.
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FIG. 2. �Color online� Correlation functions of the Ivanov-
Anderson model with �=60° against dimensionless time, �rt. Red
lines represent C2�t� and black lines represent C1�t�. �=0.5 and 0.8
from top to bottom. Thin lines indicate the results of the normal
diffusion. Dashed lines represent asymptotic algebraic time depen-
dence of Eq. �26�. The log linear plot is shown in the inset.
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���� − ��

�st − ��

= 1 + i�Ĉ1�− i�� , �52�

where �st is the static dielectric constant and �� is the optical
dielectric constant. The semi-circle of Debye relaxation is
obtained for normal diffusion. As � is decreased, the maxi-
mum of �� is decreased and the Cole-Cole diagram is de-
pressed. When � is relatively small, the Cole-Cole diagram
is symmetric, as shown in Fig. 5 for any value of �. Such
change of the Cole-Cole diagram by decreasing � has been
already noticed, but without paying much attention to the
influence of the jump amplitude �36,37�.

Now, we investigate the influence of the jump amplitude
on the Cole-Cole diagram. For the same value of �, the
Cole-Cole diagram is skewed and becomes asymmetric as
the jump amplitude � is increased, as shown in Figs. 6 and 7.
The asymmetry is larger for smaller values of �.

The results of the Kubo model are quite similar to those
of Ivanov-Anderson model. In the Kubo model, however, an
oscillation is observed, in addition to the algebraic or
stretched exponential decay, as shown in Figs. 8 and 9. In the
Kubo model of the oscillator �18,19�, it has been pointed out
that the jump contributes both to the damping and the oscil-
lation of correlation functions. Dipoles rotate in a direction
with an average amplitude �, which gives rise to oscillation
in correlation functions. In the case of magnetic resonance as
originally studied by Kubo, the oscillation corresponds to the
shift of resonant frequency found in the more elaborate
theory. In the case of electric dipoles, oscillation is due to the
rather unphysical modeling of the rotator, which has a pref-
erable direction of rotation.

The oscillation disappears by decreasing � values. When
the jump amplitude is small, C1�t� oscillates more than C2�t�.
For �=60°, C1�t� oscillates even when � is decreased to �
=0.8. In the case of �=170°, C2�t� oscillates for normal
diffusion while other decay curves exhibit essentially mono-
tonic decay.

So far, we have investigated the effect of long algebraic
waiting time on the rotational relaxation with large jump
amplitude. Large amplitude jumps are normally superim-
posed by small amplitude jumps. Therefore, we study the
case when both large and small amplitude jumps are simul-
taneously present. As shown in Fig. 10, in this case the ki-
netics is found to be almost exponential and the decay is well
represented by Eq. �50� for C1�t� and Eq. �51� for C2�t�. The
exponential kinetics is also confirmed from the Cole-Cole
diagram, where semi-circle of Debye relaxation can be seen
�not shown�. The decay curves obtained by multiplying Eqs.
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FIG. 5. Cole-Cole diagram of the Ivanov-Anderson model for
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FIG. 6. Cole-Cole diagram of the Ivanov-Anderson model for
�=0.8. Solid lines indicate �=10°, 60°, 90°, 150°, and 180°
�almost overlaps with the line of �=150°� from bottom to top at
��=0.2. Dashed line represents the Debye relaxation of �=1.0.
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FIG. 7. Cole-Cole diagram of the Ivanov-Anderson model for
�=0.5. Solid lines indicate �=10°, 60°, 90°, 150°, and 180°
�almost overlaps with the line of �=150°� from bottom to top.
Dashed line represents the Debye relaxation of �=1.0.
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�2� and �3� for small amplitude jump with the inverse
Laplace transform of Eq. �15�, where Eq. �18� for large am-
plitude jump is introduced, are different from the exact nu-
merical results. The exponential kinetics is of course differ-
ent from the algebraic decay or stretched exponential decay
found for the large amplitude jump alone. The small ampli-
tude jumps are more frequent than the large amplitude

jumps. The former gives rise to an exponential decay but in
the presence of large amplitude jump the correlation func-
tions decay almost exponentially with the time constant
much smaller than that for the small amplitudes alone. Thus,
although the large amplitude jumps are rare, they contribute
a lot to the relaxation. The waiting time distribution of large
amplitude jumps in the absence of small amplitude jumps
has an algebraic asymptotic time dependence which is easily
interrupted by the more frequent small amplitude jumps. The
decay is exponential as a result of cumulative small ampli-
tude jumps, but the decay is accelerated by the large ampli-
tude jumps.

As explained, the exponential kinetics of correlation func-
tions, C1�t�=exp�−t /�1� and C2�t�=exp�−t /�2�, results from
the interplay between the frequent small amplitude jumps
and the rare events of large amplitude jumps having alge-
braic waiting time distribution. Although the results are not
shown, substantially the same results are obtained even when
� is lowered to 1 /2. For ��1, �1 and �2 are obtained from
Eq. �50� and Eq. �51�, respectively, while the results of nor-
mal diffusion are given by, Eqs. �41� and �42�.

We now investigate the jump amplitude dependence of
the ratio of the correlation times, �1 /�2. As shown in Fig. 11,
the result for �=0.8 and that for normal diffusion are almost
the same, although the apparent functional forms are seem-
ingly very different. When �a is small, the ratio is close to 3
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FIG. 8. �Color online� Correlation functions of the Kubo model
with �=60° against dimensionless time, �rt. Red lines represent
C2�t� and black lines represent C1�t�. �=0.5, 0.8 from top to bot-
tom. Thin lines indicate the results of normal diffusion.
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FIG. 9. �Color online� Correlation functions of the Kubo model
with �=170° against dimensionless time, �rt. Red lines represent
C2�t� and black lines represent C1�t�. �=0.5, 0.8 from top to bot-
tom. Thin lines indicate the results of normal diffusion.
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FIG. 10. �Color online� Correlation functions of the Ivanov-
Anderson model for �=0.8 against dimensionless time, t /�a. The
large amplitude jump of �a=60° and the small amplitude jump of
�b=5° coexist. The frequency of the small amplitude jump is 5
times larger than that of the large amplitude jump, �a /�b=5. Red
lines represent C2�t� and black lines represent C1�t�. Thick lines
indicate the exact numerical results. Thin lines indicate the approxi-
mate results of Eqs. �50� and �51�. Short-dashed lines indicate the
result of the small amplitude jump alone. Long-dashed lines indi-
cate the result of the large amplitude jump alone. The dashed-dotted
lines are the results assuming independent superposition of two pro-
cesses as explained in the text.
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and it decreases monotonically to zero as �a is increased
close to 180°. The small deviation between the two lines is
increased as �a is increased. Since the results among differ-
ent values of � are very close, it could be difficult to judge
from the correlation functions whether the long amplitude
jumps have algebraic long time tail in the waiting time
distribution.

The exponential kinetics is robust as shown in Fig. 12.
Even when the frequency of the small amplitude jumps is the
same as that of the large amplitude jumps, the decay is still
exponential. However, when the small amplitude jumps oc-
cur 10 times less frequently than the large amplitude jumps,
then nonexponential kinetics is observed in the short time
regime, t��b.

VI. CONCLUSIONS

The models of Ivanov and of Kubo are well-known mod-
els of the decay of the orientational correlation by random
but large amplitude molecular jumps. These models are ex-
pected to give rise to decay dynamics quite distinct from the
Brownian diffusion by infinitesimal small jumps. When the
waiting time distribution for large jumps is Poissonian, even
the models of Ivanov and Kubo lead to exponential decay.
The jump angle and its distribution are estimated from two-
dimensional NMR spectroscopy by measuring quadrupole as
well as dipole correlations �38�.

However, if the waiting time distribution is not Poisso-
nian, then the difference between large jumps and the
Brownian diffusion can be significant. In the present work,
we have extended the models of Ivanov and Kubo to include

such cases. In particular, we have employed an algebraic
waiting time distribution for large jumps, as such distribu-
tions can be useful to describe liquids, especially in restricted
geometries. Recent computer simulation studies on water
and viscous liquids have indeed shown that large amplitude
motions may be more of a rule than exception.

In the present study, we have solved the theoretical mod-
els with algebraic waiting time distribution analytically to
obtain the first ��=1� and second ��=2� rank orientational
time correlation functions. As expected, the decay is nonex-
ponential, with power law at longer times. The correlation
functions for �=1 and �=2 show the same long time power
law exponents, but the short time decay behavior is quite
different for the two correlation functions.

In order to facilitate comparison with experiments on di-
electric relaxation, we have calculated Cole-Cole plots gen-
erated by the orientational decay for a wide variety of pa-
rameters, such as jump amplitude and the power law
exponent. The predicted Cole-Cole plot of dielectric relax-
ation reproduces various features of non-Debye behavior ob-
served experimentally.

In addition, we have developed a theory where both un-
restricted small jumps and large amplitude jumps coexist si-
multaneously. The small amplitude jumps are shown to have
a large effect on the long time decay, particularly in mitigat-
ing the effects of algebraic waiting time distribution. Thus, in
the limit of the appreciable number of small jumps, we find
the decay to become single exponential. We find somewhat
surprisingly that this exponential decay is much faster than
that given by small jumps alone.

In this work, we have not made any specific application of
our theory but shown that several features of the Cole-Cole
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FIG. 11. �Color online� �1 /�2 against the amplitude of the large
amplitude jumps for the fixed jump amplitude �b=5° of the small
amplitude jumps. The frequency of the small amplitude jump is 5
times larger than that of the large amplitude jump, �a /�b=5. The
solid line indicates the results of �=0.8. Dots indicate the results of
�=0.5. The red dashed line indicates the results for the normal
diffusion of �=1.0.
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FIG. 12. �Color online� Correlation functions of the Ivanov-
Anderson model for �=0.8 against dimensionless time, t /�a. The
large amplitude jump of �a=60° and the small amplitude jump of
�b=5° coexist. The frequency of the small amplitude jump is
changed. Red lines represent C2�t� and black lines represent C1�t�.
�a /�b=0.1, �a /�b=0.5, and �a /�b=1.0 from top to bottom.
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plot resemble the ones observed experimentally in complex
systems. Since algebraic waiting time distribution of jumps
naturally gives rise to a Davidson-Cole kind of frequency
dependence of dielectric function, the present formalism
should find use in interpretation of existing experimental re-
sults. Work in this direction is under progress.
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